Bias

Bias

In statistics and data analysis, bias signifies a systematic error that potentially impinges upon the precision and representativeness of data, estimates, or derived conclusions. Bias can insinuate itself at diverse phases of research or analysis - data collection, sampling, measurement, or interpretation - instigating outcomes that may be deceptive or imprecise.

Types of Bias

Bias manifests itself in an array of forms, encapsulating:
Selection bias: Selection bias emerges when a study's sample fails to reflect the broader population accurately, culminating in skewed results.
Measurement bias: This variant of bias springs from errors committed during data collection, measurement, or recording, engendering systematic discrepancies in the data.
Confirmation bias: As a cognitive bias, confirmation bias points to individuals' propensity to interpret, pursue, or recall information aligning with their pre-existing beliefs or expectations.
Response bias: Response bias transpires when study participants offer inaccurate or dishonest responses, deliberately or inadvertently, thus warping the study's conclusions.
Updated: May 22, 2023 | Published by: Statistico | About Us | Data sources
Intel: Net Income, by year
Intel: Net Income, by year
Intel Corporation's net income reflects the company's profitability after accounting for all operating expenses, taxes, interest charges, and significant exceptional items.
All topics
Ukraine War
The Ukraine War is a complex conflict, involving a multitude of nations and agencies, which started in 2014 due to disputed territories and political unrest. Read more »